Vector Partitions¶
AUTHORS:
Amritanshu Prasad (2013): Initial version
- sage.combinat.vector_partition.IntegerVectorsIterator(vect, min=None)¶
Return an iterator over the list of integer vectors which are componentwise less than or equal to
vect, and lexicographically greater than or equal tomin.INPUT:
vect– A list of non-negative integersmin– A list of non-negative integers dominated elementwise byvect
OUTPUT:
A list in lexicographic order of all integer vectors (as lists) which are dominated elementwise by
vectand are greater than or equal tominin lexicographic order.EXAMPLES:
sage: from sage.combinat.vector_partition import IntegerVectorsIterator sage: list(IntegerVectorsIterator([1, 1])) [[0, 0], [0, 1], [1, 0], [1, 1]] sage: list(IntegerVectorsIterator([1, 1], min = [1, 0])) [[1, 0], [1, 1]]
- class sage.combinat.vector_partition.VectorPartition(parent, vecpar)¶
Bases:
sage.combinat.combinat.CombinatorialElementA vector partition is a multiset of integer vectors.
- partition_at_vertex(i)¶
Return the partition obtained by sorting the
i-th elements of the vectors in the vector partition.EXAMPLES:
sage: V = VectorPartition([[1, 2, 1], [2, 4, 1]]) sage: V.partition_at_vertex(1) [4, 2]
- sum()¶
Return the sum vector as a list.
EXAMPLES:
sage: V = VectorPartition([[3, 2, 1], [2, 2, 1]]) sage: V.sum() [5, 4, 2]
- class sage.combinat.vector_partition.VectorPartitions(vec, min)¶
Bases:
sage.structure.unique_representation.UniqueRepresentation,sage.structure.parent.ParentClass of all vector partitions of
vecwith all parts greater than or equal tominin lexicographic order.A vector partition of
vecis a list of vectors with non-negative integer entries whose sum isvec.INPUT:
vec– a list of non-negative integers.
EXAMPLES:
If
minis not specified, then the class of all vector partitions ofvecis created:sage: VP = VectorPartitions([2, 2]) sage: for vecpar in VP: ....: print(vecpar) [[0, 1], [0, 1], [1, 0], [1, 0]] [[0, 1], [0, 1], [2, 0]] [[0, 1], [1, 0], [1, 1]] [[0, 1], [2, 1]] [[0, 2], [1, 0], [1, 0]] [[0, 2], [2, 0]] [[1, 0], [1, 2]] [[1, 1], [1, 1]] [[2, 2]]
If
minis specified, then the class consists of only those vector partitions whose parts are all greater than or equal tominin lexicographic order:sage: VP = VectorPartitions([2, 2], min = [1, 0]) sage: for vecpar in VP: ....: print(vecpar) [[1, 0], [1, 2]] [[1, 1], [1, 1]] [[2, 2]]
- Element¶
alias of
VectorPartition
- sage.combinat.vector_partition.find_min(vect)¶
Return a string of
0’s with one1at the location where the list vect has its last entry which is not equal to0.INPUT:
vec– A list of integers
OUTPUT:
A list of the same length with
0’s everywhere, except for a1at the last position wherevechas an entry not equal to0.EXAMPLES:
sage: from sage.combinat.vector_partition import find_min sage: find_min([2, 1]) [0, 1] sage: find_min([2, 1, 0]) [0, 1, 0]