Finite-Dimensional Algebras¶
- class sage.algebras.finite_dimensional_algebras.finite_dimensional_algebra.FiniteDimensionalAlgebra(k, table, names='e', category=None)¶
Bases:
sage.structure.unique_representation.UniqueRepresentation,sage.rings.ring.AlgebraCreate a finite-dimensional \(k\)-algebra from a multiplication table.
INPUT:
k– a fieldtable– a list of matricesnames– (default:'e') string; names for the basis elementsassume_associative– (default:False) boolean; ifTrue, then the category is set tocategory.Associative()and methods requiring associativity assume thiscategory– (default:MagmaticAlgebras(k).FiniteDimensional().WithBasis()) the category to which this algebra belongs
The list
tablemust have the following form: there exists a finite-dimensional \(k\)-algebra of degree \(n\) with basis \((e_1, \ldots, e_n)\) such that the \(i\)-th element oftableis the matrix of right multiplication by \(e_i\) with respect to the basis \((e_1, \ldots, e_n)\).EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A Finite-dimensional algebra of degree 2 over Finite Field of size 3 sage: TestSuite(A).run() sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B Finite-dimensional algebra of degree 3 over Rational Field
- Element¶
- base_extend(F)¶
Return
selfbase changed to the fieldF.EXAMPLES:
sage: C = FiniteDimensionalAlgebra(GF(2), [Matrix([1])]) sage: k.<y> = GF(4) sage: C.base_extend(k) Finite-dimensional algebra of degree 1 over Finite Field in y of size 2^2
- basis()¶
Return a list of the basis elements of
self.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.basis() Family (e0, e1)
- cardinality()¶
Return the cardinality of
self.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(7), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) sage: A.cardinality() 49 sage: B = FiniteDimensionalAlgebra(RR, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) sage: B.cardinality() +Infinity sage: C = FiniteDimensionalAlgebra(RR, []) sage: C.cardinality() 1
- degree()¶
Return the number of generators of
self, i.e., the degree ofselfover its base field.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.ngens() 2
- from_base_ring(x)¶
- gen(i)¶
Return the \(i\)-th basis element of
self.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.gen(0) e0
- ideal(gens=None, given_by_matrix=False, side=None)¶
Return the right ideal of
selfgenerated bygens.INPUT:
A– aFiniteDimensionalAlgebragens– (default: None) - either an element ofAor a list of elements ofA, given as vectors, matrices, or FiniteDimensionalAlgebraElements. Ifgiven_by_matrixisTrue, thengensshould instead be a matrix whose rows form a basis of an ideal ofA.given_by_matrix– boolean (default:False) - ifTrue, no checking is doneside– ignored but necessary for coercions
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.ideal(A([1,1])) Ideal (e0 + e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3
- is_associative()¶
Return
Trueifselfis associative.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1],[-1,0]])]) sage: A.is_associative() True sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) sage: B.is_associative() False sage: e = B.basis() sage: (e[1]*e[2])*e[2]==e[1]*(e[2]*e[2]) False
- is_commutative()¶
Return
Trueifselfis commutative.EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B.is_commutative() True sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,1,0], [0,0,1]])]) sage: C.is_commutative() False
- is_finite()¶
Return
Trueif the cardinality ofselfis finite.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(7), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) sage: A.is_finite() True sage: B = FiniteDimensionalAlgebra(RR, [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [2, 3]])]) sage: B.is_finite() False sage: C = FiniteDimensionalAlgebra(RR, []) sage: C.is_finite() True
- is_unitary()¶
Return
Trueifselfhas a two-sided multiplicative identity element.Warning
This uses linear algebra; thus expect wrong results when the base ring is not a field.
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(QQ, []) sage: A.is_unitary() True sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) sage: B.is_unitary() True sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[0,0], [0,0]]), Matrix([[0,0], [0,0]])]) sage: C.is_unitary() False sage: D = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[1,0], [0,1]])]) sage: D.is_unitary() False sage: E = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0],[1,0]]), Matrix([[0,1],[0,1]])]) sage: E.is_unitary() False sage: F = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) sage: F.is_unitary() True sage: G = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [1,0,0]])]) sage: G.is_unitary() # Unique right identity, but no left identity. False
- is_zero()¶
Return
Trueifselfis the zero ring.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(QQ, []) sage: A.is_zero() True sage: B = FiniteDimensionalAlgebra(GF(7), [Matrix([0])]) sage: B.is_zero() False
- left_table()¶
Return the list of matrices for left multiplication by the basis elements.
EXAMPLES:
sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1],[-1,0]])]) sage: T = B.left_table(); T ( [1 0] [ 0 1] [0 1], [-1 0] )
We check immutability:
sage: T[0] = "vandalized by h4xx0r" Traceback (most recent call last): ... TypeError: 'tuple' object does not support item assignment sage: T[1][0] = [13, 37] Traceback (most recent call last): ... ValueError: matrix is immutable; please change a copy instead (i.e., use copy(M) to change a copy of M).
- maximal_ideal()¶
Compute the maximal ideal of the local algebra
self.Note
selfmust be unitary, commutative, associative and local (have a unique maximal ideal).OUTPUT:
FiniteDimensionalAlgebraIdeal; the unique maximal ideal ofself. Ifselfis not a local algebra, aValueErroris raised.
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.maximal_ideal() Ideal (0, e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3 sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B.maximal_ideal() Traceback (most recent call last): ... ValueError: algebra is not local
- maximal_ideals()¶
Return a list consisting of all maximal ideals of
self.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.maximal_ideals() [Ideal (e1) of Finite-dimensional algebra of degree 2 over Finite Field of size 3] sage: B = FiniteDimensionalAlgebra(QQ, []) sage: B.maximal_ideals() []
- ngens()¶
Return the number of generators of
self, i.e., the degree ofselfover its base field.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.ngens() 2
- one()¶
Return the multiplicative identity element of
self, if it exists.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(QQ, []) sage: A.one() 0 sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0], [0,1]]), Matrix([[0,1], [-1,0]])]) sage: B.one() e0 sage: C = FiniteDimensionalAlgebra(QQ, [Matrix([[0,0], [0,0]]), Matrix([[0,0], [0,0]])]) sage: C.one() Traceback (most recent call last): ... TypeError: algebra is not unitary sage: D = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,1], [0,0,0], [1,0,0]])]) sage: D.one() e0 sage: E = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,1]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [1,0,0]])]) sage: E.one() Traceback (most recent call last): ... TypeError: algebra is not unitary
- primary_decomposition()¶
Return the primary decomposition of
self.Note
selfmust be unitary, commutative and associative.OUTPUT:
a list consisting of the quotient maps
self-> \(A\), with \(A\) running through the primary factors ofself
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.primary_decomposition() [Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 2 over Finite Field of size 3 given by matrix [1 0] [0 1]] sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B.primary_decomposition() [Morphism from Finite-dimensional algebra of degree 3 over Rational Field to Finite-dimensional algebra of degree 1 over Rational Field given by matrix [0] [0] [1], Morphism from Finite-dimensional algebra of degree 3 over Rational Field to Finite-dimensional algebra of degree 2 over Rational Field given by matrix [1 0] [0 1] [0 0]]
- quotient_map(ideal)¶
Return the quotient of
selfbyideal.INPUT:
ideal– aFiniteDimensionalAlgebraIdeal
OUTPUT:
FiniteDimensionalAlgebraMorphism; the quotient homomorphism
EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: q0 = A.quotient_map(A.zero_ideal()) sage: q0 Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 2 over Finite Field of size 3 given by matrix [1 0] [0 1] sage: q1 = A.quotient_map(A.ideal(A.gen(1))) sage: q1 Morphism from Finite-dimensional algebra of degree 2 over Finite Field of size 3 to Finite-dimensional algebra of degree 1 over Finite Field of size 3 given by matrix [1] [0]
- random_element(*args, **kwargs)¶
Return a random element of
self.Optional input parameters are propagated to the
random_elementmethod of the underlyingVectorSpace.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.random_element() # random e0 + 2*e1 sage: B = FiniteDimensionalAlgebra(QQ, [Matrix([[1,0,0], [0,1,0], [0,0,0]]), Matrix([[0,1,0], [0,0,0], [0,0,0]]), Matrix([[0,0,0], [0,0,0], [0,0,1]])]) sage: B.random_element(num_bound=1000) # random 215/981*e0 + 709/953*e1 + 931/264*e2
- table()¶
Return the multiplication table of
self, as a list of matrices for right multiplication by the basis elements.EXAMPLES:
sage: A = FiniteDimensionalAlgebra(GF(3), [Matrix([[1, 0], [0, 1]]), Matrix([[0, 1], [0, 0]])]) sage: A.table() ( [1 0] [0 1] [0 1], [0 0] )